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Supplemental Material

Despite their usefulness for volcano monitoring, emergent seismic signals, such as vol-
canic tremor or signals generated by lahars, are difficult to identify with confidence in a
timely fashion. Machine-learning algorithms offer an objective alternative to traditional
methods of identifying such volcanoseismic signals, because they are able to handle
quickly large amounts of data, while requiring little input from the user. In this work,
we combine permutation entropy and centroid as well as dominant frequency with
supervised machine learning to evaluate their potential in identifying volcanic tremor
and lahar signals recorded during the 2009 Redoubt volcano eruption. The particular
dataset was chosen for the reason that the properties and occurrence times of the vol-
canoseismic signals during the eruption are well known from previous studies. We find
that the selected features can effectively discriminate both types of signals against the
seismic background, especially for stations that are near the source. Results show that
the identification success rate for volcanic tremor reaches up to 96%, whereas this rate
becomes up to 91% for lahar signals. The calculation of the features as well as the appli-
cation of the machine-learning algorithms is fast, allowing their implementation in the
operational environment of a volcano observatory during a volcanic crisis. Finally, the
proposed methodology can potentially be used to objectively identify other emergent
seismic signals such as tectonic tremor along subduction zones, glacial tremor, or seismic
signals generated during landslides.

Introduction
Seismological observations and their analyses are indispensable
components of any volcano monitoring program, because early
manifestations of magma ascent usually involve the occurrence
of some form of seismic activity (Chouet and Matoza, 2013).
Volcanoes can generate a variety of seismic signals ranging from
earthquakes that are indistinguishable from common tectonic
events to long-duration low-frequency signals that are more dif-
ficult to detect and analyze. The main difficulties posed by such
signals are their emergent onset, the variability in their amplitude
and duration (from seconds to hours or even days), as well as
their frequency content that may partly overlap with seismic
noise. Volcanic tremor is one example of such a signal that is
generated along magma and/or fluid transporting conduits and
is usually found to precede volcanic eruptions (Konstantinou
and Schlindwein, 2003). Another example is seismic signals

generated by lahars, which are catastrophic mud flows that move
down the flank of volcanoes. From this description, it is obvious
that both types of signals can be useful for volcano monitoring
and as an early warning to catastrophic phenomena. However,
any attempt to make use of them in near-real-time hinges upon
the difficulty of confidently identifying each signal type in a
timely fashion. In most cases, their recognition among the multi-
tude of other seismic signals occurs in retrospect with the help of
additional observations, for example, time-lapse cameras record-
ing the lahar flow path. Hence, there is a need for developing
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methodologies for the fast identification of these emergent sig-
nals within the operational setting of a volcano observatory.

During the last two decades, the quality and quantity of seis-
mological observations at volcanoes have increased considerably,
making manual analysis more cumbersome and at the same time
less accurate. The term “machine learning” refers to a class of
computer algorithms that improve their ability to perform tasks
through training experience (Malfante et al., 2018; Kong et al.,
2019). Machine-learning algorithms build a model based on
sample data (“training dataset”) for the purpose of applying this

model to similar data (“testing
dataset”) that has not been used
in the training process. In this
context, one possible applica-
tion of machine learning is the
automatic recognition of a par-
ticular type of seismic signal
when it occurs almost simulta-
neously with other signals.
This is actually the situation that
observatory staff faces during a
volcanic crisis when the quan-
tity of recorded data increases
rapidly over a very short time
span. A methodology that
allows the fast recognition of
volcanic tremor and lahar sig-
nals in an observatory setting
should then fulfill two condi-
tions: first, it should be able to
handle a large volume of data,
and, second, it should not criti-
cally depend on the subjective
choice of parameters made by
the user.

In this work, we evaluate the
potential of automatically iden-
tifying tremor and lahar signals
by combining machine-learning
algorithms with features such as
permutation entropy (PE) and
spectral characteristics (centroid
and dominant frequency).
Continuous waveforms
recorded during the 2009 erup-
tion of Redoubt volcano in
Alaska are utilized for this pur-
pose, because Redoubt was suf-
ficiently monitored at that time
by the Alaska Volcano
Observatory, and the seismic
phenomena accompanying the
eruption were well studied.

We show that a combination of this small number of features
with machine learning can be a fast and objective way to recog-
nize such signals, and that the performance of our methodology
is comparable to that of previously published studies that
employed machine learning for volcanoseismic signal discrimi-
nation.

The 2009 Redoubt Eruption
Redoubt Volcano is a 3108 m high andesitic stratovolcano
located in the west of the Cook Inlet, about 180 km southwest

Figure 1. Map depicting the area around Redoubt volcano and the locations of the seismic stations
that were recording continuous waveform data during the 2009 eruption. The inset in the upper
right corner shows the location of the area relative to the map of Alaska. The seismic stations
shown on the map are operated by the Alaska Volcano Observatory. The codes of stations used in
this work are highlighted. The star indicates the eruptive vent during the 2009 eruption. The color
version of this figure is available only in the electronic edition.
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of Anchorage, Alaska (Fig. 1). After almost 20 yr of quiescence,
Redoubt started showing signs of unrest, such as edifice defor-
mation, in May 2008. At the time of the eruption, Redoubt was
monitored by a local seismic network equipped with short-
period sensors and one broadband seismometer (compare with
Fig. 1). Bull and Buurman (2013) divided the course of events
during the 2009 eruption into three phases, namely the precur-
sory phase (July 2008–15 March 2009), the explosive phase
(15 March–4 April 2009), and the effusive phase (4 April–1
July 2009). Except from deformation, the precursory phase was
characterized by gas emissions, the occurrence of deep low-
frequency earthquakes beneath the edifice, and by bursts of
volcanic tremor during January and February 2009. The explo-
sive phase consisted of a series of explosions that were followed
by lava dome effusion, whereas seismic activity occurred in the
form of earthquake swarms and bursts of volcanic tremor. Ice
melting had already started taking place since early March, and
the first lahar occurred 23 of the same month, to be followed by
another 19 lahars until 4 April.

The volcanoseismic signals observed during the 2009 erup-
tion of Redoubt have been described in terms of their temporal

and spectral properties in a series of papers that were published
in a special issue of Journal of Volcanology and Geothermal
Research (for an overview, see Waythomas and Webley,
2013). Here, we only summarize the main characteristics of
volcanic tremor and lahar signals, prompting the reader to
refer to the papers contained in this special issue for more
information. Examples of tremor and lahar waveforms along
with their spectrograms can be seen in Figure 2. It should be
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Figure 2. Unfiltered vertical-component waveforms and corre-
sponding spectrograms for (a) high-amplitude precursory tremor
that was recorded at station REF on 25 January 2009 10:20 UTC,
(b) sustained precursory tremor that was recorded at station REF
on 8 February 2009 12:00 UTC, (c) eruption tremor that was
recorded at station RSO on 23 March 2009 22:00 UTC,
(d) pseudoexplosion tremor recorded at station REF on 29 March
2009 22:30 UTC, (e) swarm tremor recorded at station REF on 27
March 2009 07:00 UTC, and (f) seismic signal generated by a
lahar that was recorded at station DFR on 24 March 2009 03:00
UTC. The color version of this figure is available only in the
electronic edition.
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noted that the terminology of the different tremor episodes
shown in Figure 2 follows the one suggested by Buurman et al.
(2013). Volcanic tremor exhibited large variations in ampli-
tude and duration, containing energy at frequencies between
1 and 15 Hz, sometimes gliding to 20 Hz or higher
(Hotovec et al., 2013). These variations are probably a conse-
quence of the different physical processes that might have been
involved in its generation, such as degassing, boiling of the
hydrothermal system, or extrusion of a lava dome
(Buurman et al., 2013; Hotovec et al., 2013). On the other
hand, the seismic signature of lahars is characterized by long
duration (>10 min) and energy at frequencies up to 25 Hz
(Buurman et al., 2013).

Selected Features and Machine-
Learning Algorithms
PE can be defined as a nonlinear statistical metric that quan-
tifies complexity in a time series x(t) by transforming it into
vectors of delay L in an m-dimensional Euclidean space
(i.e., x(t), x(t + L), …, x(t + (m − 1)L) and then by partitioning
the elements of these vectors into a sequence of symbols (Bandt
and Pompe, 2002; Cao et al., 2004; Staniek and Lehnertz,
2007). Formally, PE can be described as the Shannon entropy
for k distinct symbols so that

EQ-TARGET;temp:intralink-;df1;53;431Hp�m� � −
Xk

j�1

Pj ln Pj; �1�

in which Pj signifies the probability distribution of each dis-
tinct symbol (with j = 1, 2, 3,…, k). To make the interpretation
of the calculated values easier, Hp�m� is usually normalized by
dividing it with ln(m!), in which case PE will vary between 0
and 1, in which the former value signifies a purely determin-
istic signal and the latter indicates a purely stochastic one. This
means that different signals will likely exhibit different ranges
of PE—an attribute that can be exploited by machine-learning
algorithms for automatically recognizing one signal type
against all other. Continuous waveforms recorded at volcanoes
have been previously used to calculate PE and study its tem-
poral variations (Glynn and Konstantinou, 2016; Melchor et al.,
2020), which could also be utilized as a monitoring tool.
Complementing PE as a feature for machine learning are
two spectral characteristics, namely dominant and centroid
frequency. The dominant frequency (f d) of the signal is the
frequency with the highest power in the calculated spectrum,
whereas the centroid frequency (f c) is defined as

EQ-TARGET;temp:intralink-;df2;53;146f c �
P

N−1
n�0 f �n�x�n�P

N−1
n�0 x�n�

; �2�

in which f �n� is the center frequency of bin n, and x(n) is its
corresponding power value. The basic idea behind supervised
machine learning is to deduce from training data a hyperplane

decision surface that separates the different classes in an
optimal way. Here, we use four such algorithms:

• Single-Layer Perceptron algorithm (Freund and Schapire,
1999) works by constructing a simple feedforward neural
network and uses the Heaviside step function as the activa-
tion function.

• Sum of Errors Squared (SES) algorithm calculates iteratively
the coefficients of the hyperplane decision surface wTx by
minimizing the cost function:

EQ-TARGET;temp:intralink-;df3;320;614J�w� �
XN

i�1

�yi − wTxi�2; �3�

in which xi are elements of the feature vector, and yi is the
class label of the training dataset.

• Multilayer Perceptron (MLP) algorithm uses a feedforward
neural network along with a nonlinear activation function.
MLP consists of at least three layers of nodes (i.e., input, hid-
den, and output layer). In this study, we utilized four hidden
layers for tremor and 10 hidden layers for lahar signals,
because these configurations exhibited the best performance.

• AdaBoost algorithm (Freund and Schapire, 1997) utilizes a
large number of decision trees as “weak learners” that improve
their classification results after each iteration. The trained
algorithm is the weighted average of all these weak learners.

More details about the underlying theory and a full descrip-
tion of each algorithm can be found in Theodoridis and
Koutroumbas (2009). Our choice of algorithms reflects a var-
iable degree of sophistication and includes algorithms that thus
far have not been used extensively in volcanoseismic studies.
However, as already noted by Malfante et al. (2018), the choice
of which machine-learning algorithm to use will not alter sig-
nificantly the results as long as the selected features form a
space where the different signals can be discriminated. A
detailed description of the MATLAB functions used for these
computations can be found in the supplemental material that
accompanies this article.

Available Data and Feature Extraction
For the purposes of this study, we utilized continuous wave-
form data recorded by stations RSO, REF, DFR (compare with
Fig. 1). RSO recorded volcanic tremor data with high fidelity
owing to the fact that it was the closest station to the erupting
vent, whereas DFR recorded the lahar-generated seismic sig-
nals owing to its location close to the lahars flow path. At this
point, it should be noted that RSO was out of order from 23
March until 16 April, causing a significant gap in the recording
of continuous data. This might seem as a good reason not to
include this station in our analysis; however, outages of critical
stations (owing to technical problems or eruption-related dam-
age) are a rather common problem in volcano monitoring, and
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it would be interesting to see whether meaningful results can
still be obtained in such cases. The remaining stations were
either not available (RDE, RDW, RED), or owing to their loca-
tion they did not record useful data within the study period
(RDT, RDN, NCT, RDJH).

The continuous waveforms of the selected stations (sampled
at 100 Hz) were split into 5 min nonoverlapping segments, and
PE was calculated for each of these segments using embedding
dimension m = 5 and delay time L = 3, as in previous applica-
tions of PE to seismological data (Glynn and Konstantinou,
2016; Melchor et al., 2020). The condition for a reliable calcu-
lation of PE from observed time series is that the number of
available samples is greater than 5m! (Bandt and Pompe,
2002). This means that more than 5 × 5! = 600 samples are
needed, and, in our case, this condition is fulfilled because each
segment contains 30,000 samples. Dominant and centroid
frequencies (f d , f c) were also calculated for each segment, com-
pleting in this way the selected features that will be used as input
to the machine-learning algorithms described earlier. Hereafter,
we will refer to the triplet of values (PE, f d , f c) as an “event,” in
which each event then corresponds to a 5 min segment of con-
tinuous waveforms. All events were labeled as “volcanic tremor,”
“lahar signal,” or “other” (i.e., any other signal including noise),
based on the occurrence time of the different seismic phenomena
during the eruption that were reported in Bull and Buurman
(2013) and Buurman et al. (2013). The accuracy in the identi-
fication of the onset as well as end times for volcanic tremor and
lahars ranges from 1 to 10 min; hence there is a possibility that
some events were mislabeled. However, taking into account the
time window we use for extracting features (5 min) and the fact
that the duration of these signals is in the order of tens of minutes
or even hours, we expect that this mislabeling affected only a
small fraction of events. Plots of PE, centroid, and dominant fre-
quency versus time at stations RSO, REF, and DFR can be found
in Figures S1–S3.

We can gain some further insight into the nature of the data
and the ability of the selected features to distinguish volcanic
tremor and lahars signals from background seismicity by con-
structing histograms of PE, f d , f c for each station. Figures 3 and
4 show normalized histograms of these features for the three
stations, more specifically RSO/REF for tremor and DFR for
lahar signal recognition. To a large extent, PE can discriminate
volcanic tremor from all other seismic signals at a nearby station
such as RSO, but this discriminating power decreases at the
more distant station REF. This can be easily explained in terms
of seismic wave propagation through the heterogeneous struc-
ture of the volcano that produces smaller amplitudes and more
scattering at high frequencies, eventually resulting in higher val-
ues of PE. The effect of distance from the vent can also be
observed in the distribution of centroid frequency, with RSO
exhibiting much less overlap than REF. On the other hand,
dominant frequency seems to be much less affected by propa-
gation effects at the different stations, owing to the fact that it

attains values that are lower than 5 Hz. PE for the lahar signals
exhibits good discriminating power at DFR, whereas the overlap
between lahar and other signals is slightly more for centroid fre-
quency. Dominant frequency also appears as a good discrimi-
nating feature at DFR exhibiting only small overlap. These
observations can serve as a justification for the machine-learning
approach adopted here, instead of opting for the apparently sim-
pler approach of setting user-defined thresholds for the selected
features. It is obvious that any choice of such thresholds would
be highly subjective and would also have to be station depen-
dent. This also implies that it may be quite risky to use training
results obtained for a permanent station to identify signals at a
temporary station installed after the eruption or crisis has begun.

Training and Cross Validation
We compiled 100 training and cross-validation datasets by
randomly drawing events within the period from 1 January
to 31 May 2009 under the constraint that events included
in the training dataset are excluded from the cross-validation
one. To avoid problems with unbalanced data, we set the pro-
portion of tremor and lahar signals relative to other signals in
each training dataset to be 60% and in each cross-validation
dataset to be 40%. Six parameters are utilized to evaluate
the performance of these algorithms, namely accuracy (A), pre-
cision (P), sensitivity (S), specificity (Sp), BER (balanced error),
and bACC (balanced accuracy) score, which are defined as fol-
lows (Duque et al., 2020; Lara-Cueva et al., 2020):

EQ-TARGET;temp:intralink-;;308;392

A � �NC=NT� × 100%

P � �NTP=�NTP � NFP�� × 100%

S � �NTP=�NTP � NFN�� × 100%

Sp � �NTN=�NTN � NFP�� × 100%

BER � �1 − �S� Sp�=�2 × 100�� × 100%

bACC � ��S� Sp�=2�%;

in which NC is the number of correctly identified events, NT is
the total number of events in each dataset, NTP is the number of
true positives, NFN is the number of false negatives, NTN is the
number of true negatives, and NFP is the number of false pos-
itives. It should be noted that the BER score represents a mea-
sure of misidentified events in the sense that BER equal to 0.01
indicates that one out of 100 events is misidentified; hence the
BER score should be as small as possible. On the contrary, the
bACC score combines the sum of sensitivity and specificity
divided by 2, which is the number of classes in the data that
need to be separated (in our case we have class 1: tremor or lahar
signals, class 2: all other signals including noise). For the results
to be meaningful, bACC score should be as large as possible.

We first trained the four machine-learning algorithms using
the 100 tremor and lahar training datasets and then applied
them to the corresponding testing datasets, calculating for each
one the values of the six performance parameters at each
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station. Figure 5 summarizes the performance parameters for
the four algorithms by listing their mean values for volcanic
tremor at stations RSO/REF and for lahar signals at station
DFR. As it can be seen, station RSO exhibited the best results
in tremor recognition with mean BER and bACC scores of 4%–
5% and 95%–96%, respectively, whereas the standard errors
were in the order of 1%. Station REF exhibited a worse perfor-
mance (especially for MLP) with BER score between 15% and
23% and bACC score 77%–85% with MLP having a bACC
score of 77%. These results suggest that the outage period
of station RSO, significant as it was, influenced very little
the performance of the algorithms and also underlines the
importance of having stations near the erupting vent.

The situation for the lahar recognition performance is more
complicated, mostly due to the smaller number of events

corresponding to lahar signals in the training and testing data-
sets. The SES algorithm performed quite poorly with very low
mean sensitivity (10%), high BER score (45%), and relatively
low bACC score (55%). The other three algorithms exhibited
much better performance with high bACC score (>80%) and
acceptable BER score (9%–11%); however, the mean value of
the precision parameter varies strongly (25%–83%) among
them. In an effort to check whether these results depend on
the embedding dimension used for PE calculation, we

Figure 3. Normalized histograms of the three features used in this
study that compare the distribution of each feature for volcanic
tremor and all other signals at stations RSO and REF. The color
version of this figure is available only in the electronic edition.
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recalculated PE using different combinations of m and L
(m = 6, L = 3; m = 5, L = 2; m = 5, L= 4) and repeated the
training and testing in the same way as previously described.
Figures S4–S6 give a graphical depiction of the performance
parameters, indicating that changes in m and L in the calcu-
lation of PE have very little influence on our results (differences
in the mean values of performance parameters are, in most
cases, less than 10%). From the point of view of computer time,
a typical run for datasets consisting of 8000–13,000 events on a
PC with eight Intel i7-3770 cores using MATLAB R2018a,
showed that the SES algorithm was the fastest (∼0.31 s)
followed by AdaBoost (∼63 s).

Concluding Remarks
Most of the previous studies that utilized supervised machine
learning for classifying volcanoseismic signals relied on a large
number of extracted features (Maggi et al., 2017; Malfante et al.,
2018; Ren et al., 2020). This approach has a sound logical basis
in the sense that increasing the number of features offers more
discriminating power if many different types of signals need to
be classified. However, a large number of features are redun-
dant in cases when the goal is to simply identify a particular
volcanoseismic signal against all other. In this study, we
showed that this can be achieved using three such features

Figure 4. Normalized histograms of the three features used in this
study that compare the distribution of each feature for lahar and
all other signals at station DFR. The color version of this figure is
available only in the electronic edition.

Figure 5. Graphical depiction of the performance parameters at
each station for the different machine-learning algorithms used
in this study. Each performance parameter box is shaded
according to the scale at the right side of each panel. The number
inside each box represents the mean value of each parameter for
100 randomized datasets used for cross validation. MLP,
Multilayer Perceptron; SES, sum of errors squared; SLP, Single-
layer Perceptron. The color version of this figure is available only
in the electronic edition.

Volume 93 • Number 1 • January 2022 • www.srl-online.org Seismological Research Letters 441

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/93/1/435/5542109/srl-2021176.1.pdf
by University of Alaska Fairbanks user
on 01 March 2022



in the case of volcanic tremor and lahar signals. The selected
features (PE, f d , f c) were found to have good discriminating
power with successful identification of 96 out of 100 events
for tremor and 90 out of 100 events for lahar signals, whereas
the results depended only weakly on the chosen machine-
learning algorithm. More specifically, our results highlighted
that the selected features can achieve high success rates in
tremor identification even if a simple (but fast) algorithm such
as SES is employed. Such an algorithm may perform poorly for
lahar signals; however, in this case AdaBoost is a good alter-
native exhibiting the best trade-off between speed (∼63 s) and
performance (compare with Fig. 5).

The methodology proposed in this work has a number of
advantages that make it ideal for implementation in volcano
observatories. First, only three parameters need to be specified
by the user: namely,m, L for PE calculation, and window length.
As shown previously, the results do not critically depend on the
first two parameters, whereas the third one can be objectively
determined based on the sampling rate of the data and the emer-
gent nature of the signals that need to be identified. Second, the
calculation of all features can be done relatively fast, and along
with a suitable algorithm (SES or AdaBoost) identification
results from one or more stations can be provided within a
few minutes. Third, once the quantities PE, f d , f c are calculated,
their temporal variation can further be utilized for monitoring
purposes, as shown previously by Glynn and Konstantinou
(2016) and Melchor et al. (2020). Finally, the proposed meth-
odology could potentially be applied to other emergent (and dif-
ficult to detect) signals of geophysical interest. Such signals may
include tectonic tremor along subduction zones, glacial tremor
induced by ice melting, and seismic signals related to landslides.

Data and Resources
The continuous waveform data that were used in this study can be
obtained from the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center (https://ds.iris.edu/ds/
nodes/dmc). The MATLAB functions that implement the machine-
learning algorithms employed in this work are freely available as
an electronic supplement of Theodoridis and Koutroumbas (2009;
https://booksite.elsevier.com/9780123744869). All websites were last
accessed in June 2021. Supplemental material for this article includes
a description of the computational procedure followed, three
MATLAB functions that compute permutation entropy (PE) and
spectral features (uploaded separately), as well as six figures showing
the temporal variation of the selected features and machine-learning
results for different values of m and L.
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